
Solutions to Selected Problems from West, Installment #1

1.2.16 Suppose edge e appears an odd number of times in a closed walk W . Prove that W
contains a cycle using e.

Proof: If W is a cycle, then we’re done, so assume not. Since e appears an odd number
of times in W , it follows that e is not a cut-edge of W . Let x and y be the endpoints of
e. Since e is not a bridge, there exists an x, y-path P in W that does not use e, but
then P + e is a cycle containing e. ✷

1.2.17 Let G be the graph whose vertex set if the set of permutations of {1, . . . , n}, with two
permutations a1, . . . , an and b1, . . . , bn adjacent if they differ by interchanging a pair of
adjacent entries. Prove that G is connected.

Proof: Let x = a1, . . . , an and y = b1, . . . , bn be vertices in G. Since x and y are
permutations of {1, . . . , n}, it follows that y = xφ, where φ : {1, . . . , n} → {1, . . . , n} is
a bijection. By a standard result from the lore of permutations, φ can be factored as a
product of transpositions (pair interchanges); if k is the number of transpositions in the
factorization of φ, then there is a path of length k connecting A to B. Thus G is
connected. ✷

1.2.24 Prove that a finite graph having at least one edge contains at least two vertices that are
not cut-vertices.

Proof: Let G be a finite graph with at least one edge. We may assume that G is
connected. Let P be a longest path in G, with endpoints x and y. By way of
contradiction, suppose x is a cut-vertex. Then there exist vertices s, t in G, adjacent to
x, with the property that every s, t-path uses x. Clearly at most one of s, t lies on P .
Suppose that t does not lie on P . Then P + xt is a path in G longer than P , but this is
impossible by our choice of P . Thus x is not a cut-vertex. By interchanging labels x
and y, we see that y is also not a cut-vertex. ✷

2.3.21 Develop an efficient algorithm that, given a graph as input, decides whether the graph
is bipartite. The graph is given by adjacency matrix or adjacency lists. The algorithm
should not need to look at any edge twice.

Solution: (a sketch) An enhanced BFS will do the trick. Without loss of generality,
assume that the input graph is connected. We keep track of the distance from the
starting vertex to each other vertex. For example, if we begin at u we “mark” u by
setting d(u) = 0, and place u on a queue. When we remove a vertex v from the queue,
we first check to see that d(v) has parity opposite that of d(x) for each marked vertex
x ∈ N(v). If this fails, the graph is not bipartite and we quit. Otherwise, for each
unmarked x ∈ N(v), we mark x by setting d(x) = 1 + d(v), and place x in the queue. If



we ever go to the queue and find it empty, the parity test has never failed and the
graph is bipartite.

2.3.13 Suppose T is a MST in G, and that T ′ is another spanning tree in G. Prove that T ′ can
be transformed into T by a sequence of steps that exchange one edge of T ′ for one edge
of T such that the edge set is always a spanning tree and such that the total weight
never increases.

Proof: Let T and T ′ be as described. If T = T ′, we’re done: the sequence in question
has length zero. Suppose T �= T ′, and that the result holds for all trees T ′′ that have
more edges than T ′ in common with T . Let e be an edge of T that is not an edge of T ′.
Then T + e contains a cycle C. Among all edges of C that are not edges in T (there
must be at least one), choose e′ with maximum weight. It must be that w(e′) > w(e),
since otherwise T − e+ e′ is a spanning tree with lighter weight than T . But then
T ′′ = T ′ + e− e′ is a spanning tree with lighter weight than T ′. The result follows
inductively. ✷

2.4.1 Prove, or provide a counterexample: There is no connected Eulerian simple graph with
an even number of vertices and an odd number of edges.

Counterexample: Construct a copy of C6, with vertices consecutively labeled as
v1, v2, . . . , v6. Add edges v1v3, v3v5, and v5v1. A general procedure to construct a
counterexample of arbitrary even order n > 4 is easy to devise: start with Cn, and
insert a collection of additional edges that induce an odd cycle.

2.4.12 Prove that every undirected graph G has an orientation D such that
|d+(v)− d−(v)| ≤ 1 for every vertex v ∈ V (G).

Proof: Let G be an undirected graph. If G is Eulerian, orient the edges of G as
indicated by an Eulerian tour of G. In this case, d+(v) = d−(v) for every vertex
v ∈ V (G). Suppose, then, that G is not Eulerian. It follows that G contains some even
number of odd vertices. Insert temporary edges joining pairs of odd vertices. The
resulting graph, call it G′, is Eulerian. Orient the edges of G′ as in the previous case.
The temporary edges have become temporary arcs. Delete them. The result follows. ✷

3.1.13 Let M and M ′ be matchings in an X, Y -bigraph G. Suppose that M saturates S ⊆ X
and M ′ saturates T ⊆ Y . Prove that G has a matching that saturates S

⋃
T .

Proof: We construct a matching M ′′ that saturates S
⋃
T , using selected edges of

M
⋃
M ′. Initially set M ′′ := ∅. Consider the subgraph H induced by M

⋃
M ′. A

component in H is either an isolated edge, an even cycle in which edges alternate
between M and M ′ (an “alternating cycle”), or a path in which edges alternate
between M and M ′ (an “alternating path”). For each isolated edge in e ∈M ⋃

M ′, set
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M ′′ :=M ′′ + e. For each alternating cycle C in H , set M ′′ :=M ′′ + (E(C)
⋂
M). For

each alternating path P of odd length, set M ′′ :=M ′′ + (E(P )
⋂
M) if the endpoints of

P are M-saturated; otherwise set M ′′ :=M ′′ + (E(P )
⋂
M ′). For each alternating path

P of even length, set M ′′ :=M ′′ + (E(P )
⋂
M) if both ends of P lie in X, and set

M ′′ :=M ′′ + (E(P )
⋂
M ′) if both ends of P lie in Y . Since we did not take both M-

and M ′- edges from any component of H , M ′′ is a matching in G. It remains to show
that S

⋃
T is saturated. Let v ∈ S ⋃

T . If v ∈ S ⋃
T is saturated by an isolated edge

e ∈ E(H), then since e ∈M ′′ we know that v is M ′′-saturated. If v lies on an
alternating cycle C in H , then v is saturated by one edge from each matching; the
choice of E(C)

⋂
M is arbitrary, and v is saturated by M ′′. If v is an internal vertex on

an alternating path P of odd length, then v is saturated by both M and M ′, so we
must consider only the case in which v is an endpoint of P . Since P has odd length, v
and the opposite endpoint of P are either both (M −M ′)-saturated or both
(M ′ −M)-saturated, and we choose accordingly to ensure that the endpoints of P are
M ′′-saturated. Finally, suppose that v lies on an alternating path P of even length. As
in the odd case, if v is an internal vertex on P then v is clearly M ′′-saturated, so
suppose that v is an endpoint of P . If v ∈ S, then P is of the form
v = x1, y1, x2, . . . , yk−1, xk for some k ≥ 2. It follows that x1y1 ∈M , and that
xk ∈ X − S; since the M-edges of P saturate every vertex of P except xk, these are the
edges that we place in M ′′. Similarly, if v ∈ T , then P is of the form
v = y1, x1, y2, . . . , xk−1, yk for some k ≥ 2, y1x1 ∈M ′, and yk ∈ Y − T . Taking the M ′

edges of P saturates every vertex of P except yk, and we’re done. ✷

3.1.25 Let Q be an n× n doubly stochastic matrix. Show that Q can be expressed as a convex
combination of permutation matrices.

Before proving the claim, we establish the following lemma:

Lemma 1 Let Q be an n× n doubly stochastic matrix. Then there exists an n× n
permutation matrix P with the property that, for all i, j, pij �= 0 ⇒ qij �= 0.

Proof: Construct a graph G = (R,C,E), where ricj ∈ E iff qij �= 0. Let M be a

matching in G. Set pij =

{
1; ricj ∈ M
0; otherwise.

It is not hard to see that P = (pij) is a

permutation matrix if and only if M is a perfect matching. It suffices to show that such
a matching exists. We do so by showing that G satisfies Hall’s condition. So let S ⊆ R.
Suppose that |N(S)| < |S|. Then (relabeling the vertices if necessary) there exist t < s
such that S = {r1, . . . , rs} and N(S) = {c1, . . . , ct}. Since the only nonzeros in rows
1, 2, . . . , s of Q are in columns 1, 2, . . . , t, and since Q is doubly stochastic, it follows

that
s∑

i=1

t∑
j=1

qij =
s∑

i=1

1 = s. But then the average of column sums 1, 2, . . . , t is at least
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Figure 1: Figure for problem 3.1.28

r/t > 1, a contradiction. So |N(S)| ≥ |S| for each S ⊂ R. A similar argument applies to
subsets S ⊆ C. So at least one perfect matching in G exists, and the result follows. ✷

We now prove (3.1.15). Let Q be an n× n doubly stochastic matrix. If Q contains
precisely n nonzeros, then Q is itself a permutation matrix. Suppose, then, that Q
contains k nonzeros (n < k ≤ n2), and assume that the result holds for all nonnegative
matrices with fewer than k nonzeros and with constant row and column sums. By
Lemma 1, there exists a permutation matrix P whose nonzeros correspond to nonzeros
in Q. Let ε be the least nonzero entry in Q corresponding to a nonzero in P . By the
induction hypothesis, there exist permutation matrices P1, P2, . . . , Pm and positive

coefficients c1, c2, . . . , cm such that Q− εP =
m∑

i=1

ciPi, and it follows that

Q =
m∑

i=1

ciPi + εP , a convex combination of permutation matrices. ✷

3.1.28 We are to find either a perfect matching in the graph H , below, or a simple proof that
none exists. The reality is that none exists. The graph is bipartite, and can be labeled
as shown using colors red and blue. There are 21 vertices of each color, so at first
glance it appears that a perfect matching might exist. Such a matching would
necessarily contain 21 edges. But consider the edge cut shown by the line running
southwest to northeast and bisecting the graph. The ten blue vertices to the left of the
cut and the ten red vertices to the right constitute a vertex covering of cardinality
twenty, so by the König-Egerváry theorem no perfect matching can exist. ✷
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